CERN - EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CLIC - Note - 1064

LINEAR ACCELERATOR SIMULATION FRAMEWORK
WITH PLACET AND GUINEA-PIG.

Jochem Snuverink and Jurgen Pfingstner

European Organization for Nuclear Research, Geneva, Switzerland,
Royal Holloway, University of London & University of Oslo, Norway

Many good tracking tools are available for simulations for linear accelerators. However, several
simple tasks need to be performed repeatedly, like lattice definitions, beam setup, output storage,
etc. In addition, complex simulations can become unmanageable quite easily. A high level layer
would therefore be beneficial. We propose LinSim, a linear accelerator framework with the codes
PLACET and GUINEA-PIG. It provides a documented well-debugged high level layer of
functionality. Users only need to provide the input settings and essential code and / or use some
of the many implemented imperfections and algorithms. It can be especially useful for first-time
users. Currently the following accelerators are implemented: ATF2, ILC, CLIC and FACET. This
note is the comprehensive manual, discusses the framework design and shows its strength in
some condensed examples.

Geneva, Switzerland
14 December 2015

LinSim

Linear Accelerator Simulation Framework
with PLACET and GUINEA-PIG

Jochem Snuverink and Jiurgen Pfingstner

December 14, 2015

Contents

(1. Introduction and purpose| 4
D Simulati | 5
3. Usage) 8
3.1. Basicusage| 8
3.2. Adding test code| 8
[3.2.1. Simple Example] 9

3.3. Logging] e 11
[3.4. Parallel computing] o 11
[B.5. Data evaluation toolsl. L o 13
[3.5.1. Evaluation scripts]o 13

[3.5.2. Plotting scripts| 13

[3.6. Tipsand tricks| 13
[4. Code structure| 14
[4.1. Directory structure] 14
[4.2. Beamlinesetup| 15

[5. Support and code extension| 16
|A. Installation 17
AT PTACET] . - o o oo e e e e e e e 17
B2 GUINEADPIGl. . . . o oo e e e e e e 18
A3, Frameworkl 18
[A.3.1. Machine without AFS 19

B D 20
[B.1. Calculation of orbit response matrix| 20

[C. Simulation parameter and options| 23
[C.1. General Simulation Parametersl 23
[C2. Tattice Parametersl 24
[C.3. Beam Parameters|. oo 24
|C.3.1. Phase configuration| 25

[C3.2. Beam-beaml 25

C.3.3. GUINEA-PIGI o o 26

|C.4. Machine specific parameters| oL 26

C. 4.1, ATE2l e 27

C.4.2. CLICI e e e 34
[CA3"TACET 35

C. 4.4, TLC . . . e e e 35

|C.5. Logging Parameters| 35

|C.6. Imperfections| 37

|C.6.1. RF qtter variables| oL 37

|C.6.2. Initial beam jitter] 38

|C.6.3. Constant initial beam energy variation|. 38

|C.6.4. Quadrupole strength jitter|. 38

|C.6.5. Quadrupole position jitter| 39

|C.6.6. Quadrupole roll jitter] 39

|C.6.7. System Identification parameters| 39

[C.6.8. BPM driftsl 40

[C.6.9. component failures (static)| 40

|C.6.10. add noise to response matrix| 40
[C.6.11.L-FB gain errors| 41
[C.6.12. Wake field monitor offset] 41

IC.7. Ground Motionl 41
[C.8. Alignment| 42
0.9, Tracking]o 42
|C.9.1. Synchrotron radiation| 42
[C.10.0rbit feedbackl 43
[C.11.IP feedback Parametersl 44
[C.11.1. Intertrain feedbackl oo oo 44

[C.11.2 Intratrain feedbacklo 45

NING| o . e e e e e e e e e 46

|C.12.1. Use of Beam based alignment| 46

|C.12.2. Dispersion Free Steering| 46
|C.13.Long term steering| e 46
|C.13.1. Basic steering| 46

(C.13.2. Online dispersion estimation / Dispersion free steering| 47
|C.14.5pecific Simulation Parameters| L. 48
[D. Description of output files| 48
[E. Description of parameters available for user scripts| 48
[EI Element indices 48
[E.2. Accelerator and simulation status/. o000 49

[F. Python Analysis Documentation| 50
[G. Brief introduction to scripting languages| 50

1. Introduction and purpose

When simulating linear accelerators or transport lines, one encounters repeating tasks
that are basically the same for each simulation as:

e Setting up the model of the beamline and the beam

e Specifying and saving simulation parameters

e Implementing a simulation structure to simulate typical scenarios

e Implementing of correction techniques

e Implementing imperfections as ground motion and component imperfections
e Maintain scripts to ease parallel computing on a server farm

e Evaluating the results

e Performing backups and keeping track of changes

All these tasks are usually repeated for each simulation project that is started. As a
result, there are a large number of implementations of very similar code in each beam
physics team, which reduces the productivity significantly.

Instead of this approach, a unified simulation framework for PLACET [1] and GUINEA-
PIG [2], named LinSim, is described in this document. It automates the mentioned tasks
and takes its (re)implementation burden of the developer. The work of the user is sim-
plified to specify simulation settings and to add the specific code for the given problem.
This makes LinSim easy to use and still flexible enough to perform basically every test
case. Additionally, such an unified framework can include more tools than would usually
be implemented, e.g. consistency checks for certain parameters, automated settings stor-
ing to be able to reproduce the results at a later stage, code management via SVN [3],
and many others. This helps to increase the productivity of the user. Especially (but
not only) for newcomers, LinSim is an enormous starting help, since they don’t have to
know all the details of the already provided simulation scripts. Other advantages are
that correction techniques (e.g. orbit feedbacks, IP feedbacks, dispersion free steering,
wakefield alignment, and many other) only have to implemented once, which increases
productivity drastically and leads to well debugged code.

The structure of the framework is illustrated in Fig. [Il It consists of a set of scripts
written in Tcl [4] and Octave [5] that interface different simulation codes: PLACET is
used for the beam tracking, a ground motion simulator [6] (which has been ported to
C++ and is now included in PLACET) generates realistic element misalignments, and
GUINEA-PIG facilitates beam-beam simulations. All these interfaced codes are written
in C++ [7]. Several types of imperfections are implemented and can be turned on and off
via simulation parameters (see Apps. [C.6,[C.7, and[C.8)). Also, many algorithms for the
correction of these imperfections, e.g. beam-based alignment and orbit feedbacks, have
been put in place (see Apps. [C.10,|C.11} and|C.12|). Historically, LinSim was developed

element
offsets

beam-beam
parameters

initialisation data in-/output

input output
file files

s

\- J

Figure 1: Internal structure of LinSim, where scripts (written in Tcl and Octave) in-
terfaces the simulation codes PLACET, a ground motion generator, and
GUINEA-PIG. An input file is used to control the simulations that use ad-
ditional data as lattice files and created standardised output files.

for orbit feedback simulations for CLIC, but has then been extended to a universal tool.
LinSim also provides the lattice, beam and wake field information of the accelerators
ATF2, CLIC, FACET, and ILC (even though they are not directly an element of the
code). All of these accelerators can be simulated by simply specifying their name as the
parameter machine name (see App. |C.1)).

2. Simulation structure

A typical simulation consists of two components as depicted in Fig. 2 The first part is
a set of provided scripts that make up LinSim itself, together with provided lattice files
and additional data as, e.g. orbit response matrices. The entry point to LinSim is the
script run.tcl, which is executed with PLACET. The second element of a simulation
is the user specific test, which consists of two files: a settings file and a code file (e.g
test_settings.tcl and test_code.m in Fig. [2). These files control the execution of
LinSim and therefore determine the specific simulation. In the settings file, parameters
and settings can be specified that overwrite the initial ones. In the code file, code can
be added that is linked into the execution of the framework at three different point to
make LinSim as flexible as possible. Examples for test files are given in App.

The structure of each simulation can be divided in four parts depicted with different
colours in Fig. Pl In the code, the status variable sim mode indicates which part is
currently executed, which is useful, e.g. for the logging of results:

e Initial setup (yellow): sim mode = setup_mode

e Seed loop (orange): sim mode = static_mode

run.tcl test_settings.tcl

Load parameters ‘(\

Setup accelerator

Setttings & Parameters

) set user_code test_code.m
Loop 1: machine seeds :

Static imperfections

test code.m

User code: static ‘\
N User code: static

Lattices
Data
Scripts

Figure 2: Structure of a simulation with LinSim (entry point is run.tcl), which used
external data and is controlled via two test file, e.g. test_settings.tcl and
test_code.m. Code from the test files is linked into the four different parts of
the execution, which increases the flexibility significantly.

e Long-term loop (blue): sim mode = long term mode
e Short-term loop (green): simmode = short_term mode

Note that most simulations will only consist of a subset of these four parts as, e.g.
initial setup and short-term loop. The specific structure depends on the parameter
choice. These four parts give the user a flexible simulation environment. The first part
of LinSim, which is the initial setup, will always be executed (yellow in Fig. . It consists
of loading the initial settings and overwriting them with the user specific ones. Then,
the accelerator model and the according beam(s) are set up (e.g. for CLIC). There are
many parameters related to the setup of the accelerator model, which will be explained
in App. and App.[C.4 Here only a few important parameters are discussed necessary
for the following explanations:

e machine_name: The accelerator to be simulated: ATF2, CLIC, FACET, or ILC.

e use only_ one_arm: For a collider (CLIC and ILC), usually the e~ and the e parts
are simulated and the created beam can be used for beam-beam simulations. If
the parameter is 1 then only the e~ arm is simulated. The beam can be collided
with itself (0 or 1).

e use_rtml: The ring to main linac transfer (RTML) of the accelerator is used (values
Oor1).

e usemain linac: The main linac of the accelerator is used (values 0 or 1).
e use_bds: The beam delivery system of the accelerator is used (values 0 or 1).
e use_beam beam: The beam-beam simulations are performed (values 0 or 1).

Clearly not all combinations of the above parameters are possible. For example, beam-
beam simulations make no sense, if the beam delivery system(s) are not used. Such
impossible combinations are detected by initial checks and the simulation is stopped.

After the initial setup, the code enters the first of the three interleaved loops. This
first loop (orange in Fig. |2 iterates over a number of seeds (specified via nr_machines).
Each seed corresponds to a different setup of the initial imperfections (misalignments
and static component imperfections), which are created via random number generators.
Tterating over many seeds is usually necessary to be able to calculate an average statisti-
cal behaviour. The use of many random seeds within one simulation is especially useful,
if the individual simulations take only very short simulation time. If the individual sim-
ulations take longer, it is more appropriate to distribute the different seeds on different
computers of a computer farm (see Sec. and simply set nr_machines to 1. Within
the simulation of one seed, the initial misalignment and the static imperfections are set
up. Then, the user specified code in the section ”User code: static” of the test file is
executed. This code allows to create user-specific imperfections and to test according
mitigation methods. This section can correspond to the start up of the accelerator, or
its reactivation after a shutdown.

As a next step, the execution enters a double loop consisting of a short-term loop
(green in Fig. [2) and a long-term loop (blue in Fig. [2). Each step of the short-time
loop corresponds to one beam arrival and therefore to one beam tracking. In case of
CLIC this occurs every 20ms in real time. The number of iterations can be controlled
via the parameters nr_time_steps_short. Within each step of the short-term loop the
following activities are performed:

e Apply the specified dynamic imperfections, e.g. ground motion

Track the beam(s) through the accelerator

Collide the two beams (if specified)

Save the results

Apply already implemented correction methods (if specified)
e Execute the user code in the test file under ” User code: short-term”

The short-term loop is the right place to test train-to-train effects and systems as orbit
feedback systems and system identification schemes in full detail.

Since real time simulations are computationally expensive, it is often not possible to
simulate effects on larger time scales in full detail. Therefore, the long-term loop can
be used. This loop starts with the creation of imperfection that corresponds to the

time specified in the variable delta_T_long. Then the short-term loop is executed, and
finally the user specific code in the test file under ”User code: long-term” is performed.
The long-term loop is repeated nr_time_steps_long times. It is the right place to test
long-term effects such as ground motion and mitigation methods such as dispersion free
steering and IP feedback.

3. Usage

3.1. Basic usage
LinSim is started in a terminal with the command
placet run.tcl test_settings.tcl paraml param2 ...

As can be seen, the code PLACET interprets the script run.tcl. The script run.tcl
reads the test settings file test_settings.tcl in which the user has specified the sim-
ulation settings. Note that only the test settings file is passed, since the test code file
is specified in the test settings file in the variable user_code. An arbitrary number of
parameters, e.g. paraml, can be passed by the user. These parameters are available in
test_settings.tcl as Tcl variables. The number of parameters is stored in argc, and
the parameters itself can be accessed via the list argv. The first parameter paraml can,
e.g., be used to initialise the ground motion seed with the Tcl command

set groundmotion(seed) [lindex $argv 1]

More examples for the passing of external parameters can be found in App. [B]

3.2. Adding test code

The test file consists of four sections. While the first section settings of the simulation
can be specified, the other three sections are used to add user code that is executed
at different points in LinSim (see Sec. [2| for more explanation). The first part of code
corresponds to initial misalignments, static imperfections, and initial correction methods,
and has to be filled between the lines

if (sim_mode == static_mode)

end

The user code executed at the end of each step of the short-term loop has to be placed
within

if (sim_mode == short_term_mode)

end

Finally, the user code executed at the end of each step of the long-term loop has to be
put into

if (sim_mode == long_term_mode)
end

3.2.1. Simple Example

This example does a scan over different rolls of the last quadrupole QDO for CLIC. It
can be found in LinSim/tests.
Settings file qd0_rollscan_settings.tcl:

% code file

set user_code "tests/qdO_rollscan_code.m"

% machine

set machine_name "CLIC"

% scan values in microrad

set values_to_scan {-100 -75 -50 -25 0 25 50 75 100 O}
% number of steps, equal to values

set nr_time_steps_short [llength $values_to_scan]
% number of long time steps

set nr_time_steps_long 1

% use BDS and beam beam interaction

set use_main_linac O

set use_bds 1

set use_beam_beam 1

% output directory

set dir_name "QDO_rollscan"

Code file qd0_rollscan code.m

% static mode, store initial roll
if (sim_mode == static_mode)
qdO_roll_start = placet_element_get_attribute(’electron’,
index_qdO(electron),
’roll?’)
end

% short time mode, apply new roll setting
if (sim_mode == short_term_mode)
% new roll setting
qd0_roll = values_to_scan(time_step_index_short) + qdO_roll_start
% apply to beamline
placet_element_set_attribute(’electron’,
index_qdO(electron),
’roll’,

qd0_roll)

end

if (sim_mode == long_term_mode)
% nothing to be done here

end

To start the simulation in PLACET
placet run.tcl tests/qdO_rollscan_settings.tcl

The data can be plotted with Python scripts that are provided, see section for a
full description.

python

import TrackingAnalysis

a=TrackingAnalysis.MeasurementStation(directory="../QDO_rollscan/")

a.lumiScanPlot(-100,100,25,1abel="QD0 Roll scan [μrad]’,
plotname=’QDORoll’)

The output is shown in Fig.

1.6 x 1034

(@] — — —_
[0/¢] [en) [N e~

Peak Luminosity

S
>

0.2 3 3 :
100 =50 0 50 100

QDO Roll scan [prad]

Figure 3: Peak luminosity versus QDO roll.

More examples of test files can be found in Appendix [B] and LinSim/tests/, where
also the template file test_template.tcl is provided.

10

3.3. Logging

In LinSim, the task of logging is simplified and automated as much as possible for the
user. At maximum (depending on the beamline setup), there are four data sets defined
that consist of the most important values. These data sets are stored automatically
to according log files whenever the Octave script postprocess_time_step.m is called.
Each data set corresponds to a different location along the accelerator (measurement
stations):

e End of e= RTML: meas_station_O_machine_index.dat

e End of e~ main linac: meas_station_1 machine_index.dat

e Final doublet of e~ beam delivery system: meas_station_2_machine_index.dat
e Interaction point: meas station 3 machine index.dat

The variable machine_index corresponds to the index in the seed loop, which means
that for each seed a different set of files is created. Logging is not performed in the e™
part of colliders. If an accelerator does not have a certain subsystem, e.g. FACET does
not have a beam delivery system nor an interaction point, the according log file is not
created.

The data sets are stored at all important simulations steps: after lattice setup, after
static misalignment, after each short-term step, and after each long-term step. If logging
is also necessary at a different location, it can be added in the user code via a simple
call of postprocess_time_step.m. Each call creates one line of data in the log files, and
each column corresponds to one value of the predefined data sets. A description of the
logged values is written as a header into the log files. If additional values are needed to
be stored, they have to be added in postprocess_time_step.m.

When analysing the simulations results, it is necessary to know which line in the
log files corresponds to which simulation step. Therefore, the first three columns are
the values of time_step_index_long, sim mode and global_time, where global_time
is a variable that corresponds to the duration of the simulation in real-time (as in the
real machine). Additional to the described standard logging implementation, there are
several other possibilities to store specific data for special analysis. The available options

are described in App.

3.4. Parallel computing

In most cases, it will not be sufficient to run only one simulation, since e.g. the used
imperfections are randomly distributed. Many simulation results (corresponding to dif-
ferent seeds) should be averaged. If the simulation of each seed takes long time (which
is usually the case), the simulations of the different seeds have to be distributed over
several computers (parallel computing). In this section, it is shown how this can be done
using the job scripts in LinSim/jobs/. Here, the focus is laid on the Ixbatch computing
service of CERN. Also, it is assumed that LinSim is installed on a user directory on
AFS.

11

The first step for the user is to create a bash script called job_universal.sh, which is
the job that is passed to the Ixbatch system. To created such a file, the provided template
file job_universal template.sh can be used. Only the two paths basedir and homedir
have to be specified. The directory basedir is the basis directory containing also LinSim
(see Sec. for more information). The directory homedir is the directory where the
results of the simulation should be copied. The definition of these paths usually takes a
form similar to

export basedir=/afs/cern.ch/work/$USER/clicsim/trunk/
export homedir=/afs/cern.ch/work/$USER/sim_results/

The file job_universal.sh usually only has to be created once at the installation of
LinSim. Then, it can be used to start a job by typing

bsub -q queue_name job_universal.sh settings_name paraml param2 ...

Here, queue_name is the queue where the job should be submitted to, e.g. 2nd (two "nor-
malised days”), settings_name is the main settings file to be used, and the parameters
are values that are passed to the test file. There are many more options for Ixbatch, e.g.
for acquiring information about running jobs via bpeek and for killing running jobs via
bkill. For more information about lxplus and AFS please refer to [§].

The typical application of LinSim on a parallel computing system is to perform the
simulation of different seeds and/or parameter scans. Therefore, it is convenient not
to start every job individually, but via a loop implemented in the following template
scripts:

e submit_jobs_seed_scan.sh: Start jobs for a range of seeds.
e submit_jobs_param_scan_1d.sh: Start jobs for a parameter scan of one variable.
e submit_jobs_param scan 2d.sh: Start jobs for a parameter scan of two variables.

e submit_jobs_seed _param scan.sh: Start jobs for a range of seeds and at the same
time a parameter scan of one variable.

A typical example would be the evaluation of the ground motion effects in a linear
accelerator for ten different seeds. Such simulations can be started via the command

./submit_jobs_seed_scan_param_scan.sh tests/ground_motion_test.tcl 2 11

As aresult, LinSim is started on ten different computers of the Ixbatch system with seeds
from 2 to 11. The test file LinSim/ground motion_test.tcl is used for each simulation.
Note that for scans in two parameters the number of started jobs grows rapidly. Also
note that each job file has to have executable rights with respect to their file permissions,
which can be assigned with the command

chmod u+x file_name.sh

12

3.5. Data evaluation tools
3.5.1. Evaluation scripts

To evaluate the results of seed and/or parameter scans the individual results have to
be combined. The following templates for this propose can be found in the directory
LinSim/jobs/:

e eval _seed_scan.m

e eval param scan.m

e eval_param_scan_param_scan.m

e ecval param scan_seed_scan.m

e eval param scan_seed_scan_iter_scan.m

The usual procedure is to copy the appropriate template and assign a more specific file
name. Then the first few open parameter of the script have to be specified and the data
are evaluated by starting the scripts with Octave. The names are mainly self-explaining,
where for long-term simulations the quantities to evaluate are only evaluated at one
specified long-term step. If these quantities should be evaluated at several long-term
steps, eval_param scan_seed_scan_iter_scan.m can be used.

3.5.2. Plotting scripts
3.6. Tips and tricks

e One can rerun a simulation (when the exact settings are forgotten) by using the
output file settings.dat:

placet run.tcl settings.dat

e Additional command line arguments can be added in the personalised settings file,
e.g.:

set ground_motion_x [lindex $argv 1]
set ground_motion_y [lindex $argv 2]

This will run with ground motion on in the horizontal direction and off in the
vertical direction:

placet run.tcl my_settings.tcl 1 O

e All settings variables are available in both Tcl and Octave. They are constant in
Tecl and cannot be changed. It is advised not to change them in Octave. New
Octave or Tcl variables will be in principle not available in the other language.
With the octave command Tcl_SetVar, variables can be transported:

13

Tcl_SetVar("machine_index", "1");

e To increase the number of threads/cores that should be used on a machine, add
the following PLACET command to the settings:

ParallelThreads -num 2

e To debug a new script faster, reduce the number of particles.

4. Code structure

In the following, a short overview about some aspects of the code structure of LinSim is
given. Since the explanations are not a full code documentation the user is referred to
the source code for aspects that are not covered.

4.1. Directory structure

The source code of LinSim is stored as part of a larger SVN directory that also includes
lattice and beam descriptions of different accelerators, and other simulation setups. Not
all of these directories are needed for LinSim.

The SVN base directory is ./clicsim/trunk/. Its sub-directories correspond to the
different available machines: ATF2/, CLIC/, FACET/, and ILC/. Each accelerator direc-
tory contains the sub-directories:

e Lattices: The lattice files of the different machines
e Common: Additional model information as beam creation and wake field properties
e Frameworks: Different simulation frameworks

The directory ./clicsim/trunk/LinSim/ contains LinSim. To use a certain accelerator,
e.g. ATF2, only the directories ./clicsim/trunk/ATF/Common and
./clicsim/trunk/ATF/Lattices have to be checked out. An according description of
the installation is given in App. Within the LinSim directory, there are the following
sub-directories:

e analysis: Scripts to analyse the results of simulations

data: Data files of smaller size, e.g. different ground motion models, stabilisation
system transfer functions, and typical initial misalignments of tuned machines

e doc: Documentation of LinSim
e jobs: Scripts to facilitate parallel computing with the Ixbatch system
e scripts: Source code of LinSim

e tests: User tests for LinSim

14

Two additional comments have to be made. Firstly, only relatively small data files are
stored directly within LinSim in data/. More data are available, if needed, on AFS
in /afs/cern.ch/eng/clic/machine/LinSim/. If, e.g., LinSim is installed locally and
there is no direct access to Ixplus, the necessary data can be copied to the local computer
via ssh. The directory where the copied (or newly created) data are located has to be
specified via parameter data_dir.

Secondly, tests files in tests are stored there to archive them. If they are used
for simulation, a different directory structure should be implemented. For each test a
separate directory should be created in LinSim/ with the same name as the test file
(apart from the ending). This setup allows to start several simulations in parallel and to
store the results in separate directories. It is also the structure expected by the scripts
in jobs/ to facilitate efficient parallel computing on Ixbatch.

4.2. Beamline setup

In the following it is explained how a new accelerator can be added to LinSim in addition
to the already available machines ATF2, CLIC, FACET and ILC. It is assumed that this
new accelerator is called ERL and that its lattice and beam models are already available
in ./trunk/ERL/Common/ and ./trunk/ERL/Lattices/. In particular, files with the
following names have to be available ./trunk/ERL/Common/scripts/:

e wf long phase ml.tcl: Acceleration voltage phase with respect to the beam phase
and long-range wakefield information

e wf _short ml.tcl: Short-range wakefield model of the accelerating cavities

If the according information are not used for the ERL accelerator the files can be left
empty, but still have to be created. As a next step, the following files have to be created
(LinSim/ is assumed to be the base directory) and filled according to the example of an
existing accelerator:

e ./settings_erl.tcl: Settings specific to the ERL

e ./scripts/test_settings_erl.tcl: Parameters check with respect to their con-
stancy (especially since not all methods are implemented for all accelerators)

e ./scripts/add_erl lattice.tcl: Lattice setup

e ./scripts/define beampars_erl.tcl: Beam parameter setup (usually defined in
./trunk/ERL/Common/scripts/beam pars.tcl)

e ./scripts/create_element_indices_erl.m: Define the needed element indices

specific for ERL

./scripts/define_instrumentation hardware_erl.m: Define the hardware in-
dices used for different instrumentation methods

15

Calls to the files have to be added with if-else-statements at the following locations
according (follow the examples of already existent accelerators):

e In ./scripts/load settings.tcl add settings_erl.tcl
e In ./scripts/test_settings.tcl add test_settings_erl.tcl

e In ./scripts/accelerator_setup.tcl add add_erl lattice.tcl (two times)
and define beampars_erl.tcl:

e In ./scripts/create_bpm_corr.m add
./scripts/create_element_indices_erl.m and
./scripts/define_instrumentation hardware_erl.m

5. Support and code extension

Users of LinSim are very welcome to contact the developers:
e Jochem Snuverink (jochem.snuverink@rhul.ac.uk)
e Jiirgen Pfingstner (juergen.pfingstner@cern.ch)

with their questions, suggestions for improvements, bug findings and all other issues
concerning the framework. The framework LinSim is not a finished project, but should
be extended and improved in the future. Every user is therefore welcome to contribute.
Especially, please add your test files so that also others can profit from your expertise.
Also changes in LinSim itself are welcome, but please coordinate such modifications with
the developers.

For some additional information see the IPAC paper [9] and the LCWS presenta-
tion [10]. The latest version of this manual can be downloaded from the SVN server at
https://svnweb.cern.ch/cern/wsvn/clicsim/trunk/LinSim/doc/Framework_doc.pdf
(see also Section or (with a CERN userid) from http://clicsw.web.cern.ch/
clicsw/LinSim. LinSim has nightly tests to ensure the latest version is in a good state.
The status can be viewed at http://abp-cdash.web.cern.ch/abp-cdash/index.php?
project=LinSim

16

https://svnweb.cern.ch/cern/wsvn/clicsim/trunk/LinSim/doc/Framework_doc.pdf
http://clicsw.web.cern.ch/ clicsw/LinSim
http://clicsw.web.cern.ch/ clicsw/LinSim
http://abp-cdash.web.cern.ch/abp-cdash/index.php?project=LinSim
http://abp-cdash.web.cern.ch/abp-cdash/index.php?project=LinSim

A. Installation

To be able to use LinSim, it is necessary to install PLACET. If beam-beam simulations
should be performed, also the GUINEA-PIG has to available. A detailed description
of the usage as well as the installation of PLACET and GUINEA-PIG can be found at
http://clicsw.web.cern.ch/clicsw/ [I] and http://clicsw.web.cern.ch/clicsw
[2], respectively. Here, only some minimal information for the installation if theses codes
is extracted.

For the case, the simulations are started on AFS, it is sufficient to run the script

source /afs/cern.ch/eng/sl/clic-code/setup.sh

to set the correct paths to used PLACET and GUINEA-PIG. For the case, the simu-
lations are started on a local computer, the necessary steps for the installation of these
codes are summarised in the following. To check out source codes, the user has to have
access rights to the according SVN directories. Therefore, please contact Andrea Latina
(andrea.latina@cern.ch) or the developer of LinSim.

A.1. PLACET

As a requirement for the installation of PLACET several software packages have to be
installed. The use of the MacPorts system [11] on a Macintosh computer is assumed in
the following. For an installation on Linux, please install the according packages with an
appropriate package management system. The following packages have to be installed:

e octave

e python (optional)

e tcl

e gsl (GNU Scientific Library)

Please also make sure that the latest compiler version is installed. This can be ensured
easiest by typing

sudo port selfupdate
sudo port upgrade outdated

Also make sure the latest version of the ”Xcode command line tools” is installed by
executing

xcode-select —--install

in the command line. Then, the latest versions of the code PLACET can be checked out
via SVN with the expression, with CERN userid,

svn co svn+ssh://$USER@svn.cern.ch/reps/clicsw/trunk/placet

17

http://clicsw.web.cern.ch/clicsw/
http://clicsw.web.cern.ch/clicsw

or without CERN userid:
svn co http://svn.cern.ch/guest/clicsw/trunk/placet
Finally PLACET can be installed by the series of commands

cd placet

./configure --prefix=[install_dir] --enable-octave
. /make

./make install

where [install _dir] should be a directory in the search path and in which the user
has write rights. If also the Python interface and the code parallelisation should be
installed, add the parameter -—enable-python and --enable-mpi to the ./configure
command.

A.2. GUINEA-PIG

To be able to install GUINEA-PIG, please install first the fftw package, which stands
for ”Fastest Fourier Transform in the West”. Then, the C++ version of GUINEA-PIG
can be checked out via, with CERN userid,

svn co svn+ssh://$USER@svn.cern.ch/reps/clicsw/trunk/guinea
or without CERN userid:

svn co http://svn.cern.ch/guest/clicsw/trunk/guinea
The code can be installed via

cd guinea

./configure --prefix=[install_dir] --enable-fftw3
make

make install

A.3. Framework

The LinSim framework is stored as part of a larger SVN directory that also includes
lattice and beam models of different accelerators, and other simulation setups. To check
out the full directory, execute the following command, with CERN userid,

svn co svn+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/
or without CERN userid:
svn co http://svn.cern.ch/guest/clicsim/trunk/

Since the checkout includes a lot of unused files, it is suggested to follow a different
approach of creating the necessary directory structure by hand and checking out only
the necessary parts. This can be achieved by the following commands

18

mkdir -p clicsim/trunk

cd clicsim/trunk

svn co svnt+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/LinSim

mkdir CLIC

cd CLIC

svn co svn+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/CLIC/Common
svn co svn+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/CLIC/Lattices

To use also other accelerators beside CLIC the according directories have to be checked
out. For the example of ILC takes the form

cd ..

mkdir ILC

cd ILC

svn co svn+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/ILC/Common
svn co svn+ssh://$USER@svn.cern.ch/reps/clicsim/trunk/ILC/Lattices

The framework can also be browsed at https://svnweb.cern.ch/cern/wsvn/clicsim/
trunk/LinSim

A.3.1. Machine without AFS

The framework assumes by default that the data directory is located on AFS in the
directory /afs/cern.ch/eng/clic/machine/LinSim/ as explained in Sec. In case
there is no direct access to AFS, the necessary data have to be copied to the local
computer via ssh and the new data directory path has to be specified in the settings
variable data_dir. However, the user is advised to not change this variable directly in
the file settings_common.tcl, since in this change would be checked in with the next
SVN commit and the AFS path would be lost as the standard. Instead, create in the
directory LinSim/ the file my_computer.tcl (where settings unique to the computer can
be such set as the directory structure) and add the following line to specify the data
directory

set data_dir [path_to_local_data_dir]

If the data directory is not needed leave my_computer.tcl empty.

19

https://svnweb.cern.ch/cern/wsvn/clicsim/trunk/LinSim
https://svnweb.cern.ch/cern/wsvn/clicsim/trunk/LinSim

B. Examples

Some more examples, for the simple QDO roll example see Section

B.1. Calculation of orbit response matrix

This example calculates the response matrix of the FACET beamline. It can be found
LinSim/tests.
Settings file facet_response matrix_demo_settings.tcl

set user_code "tests/facet_response_matrix_demo_code.m"
set machine_name "FACET"

first argument is seed number
if {$argc > 1} {

set global_seed [lindex $argv 1]
b

set nr_time_steps_short 23
set nr_time_steps_long 2

static misalignment
set use_misalignment 1
set alignment_bpm_sigma O ;# [um]

ground motion generator short term
set ground_motion_x 1

set ground_motion_y 1

set groundmotion(model) "B"

ATL motion

set ground_motion_long _x 1
set ground_motion_long_y 1
set delta_T_long 3600

Response parameters
set dipole_correctors 1
set corr_step 1 ;# [m]

set dir_name "FACETResponseMatrix"

FACET specific
set use_only_one_arm 1

20

set
set
set
set
set

use_rtml O

use_main_linac 1

use_bds 0

use_beam_beam O
use_bpm_set_value "bpm_center"

Code file facet_response matrix_demo_code.m

if (sim_mode == static_mode)

end

% apply misalignment --> already in Framework!
R_x = zeros(nr_bpm, nr_corr);

if (sim_mode == short_term_mode)

end

% set corrector
placet_element_set_attribute(’electron’,
corr_index(10*(time_step_index_short)),
’strength_x’,
corr_step);
if (time_step_index_short > 1)
placet_element_set_attribute(’electron’,
corr_index (10*(time_step_index_short-1)),
’strength_x’,
0);
end

if (time_step_index_short == 1)

% ref orbit

ref_orbit_x = bpm_readings(:,x,electron);
else

% store results

R_x(:,time_step_index_short-1) =

(bpm_readings(:,x,electron) - ref_orbit_x)/corr_step;

end

if (sim_mode == long_term_mode)

end

% apply ATL misalignment --> already in Framework!

% save response matrix

filename = [’R_x’, int2str(time_step_index_long), ’.dat’]
save(filename, ’R_x’, ’-ascii’);

% reset for next iteration

R_x = zeros(nr_bpm, nr_corr);

21

To start the simulation in PLACET with seed 3:
placet run.tcl tests/facet_response_matrix_demo_settings.tcl 3

Or to run a 20 consecutive seeds on Ixbatch to the 8 hour queue:

cd jobs
./submit_jobs_seed_scan.sh
tests/facet_response_matrix_settings.tcl 8nh 1 20

This can generate a simple response matrix plot. see Fig. [d}

Figure 4: FACET response matrix.

22

C. Simulation parameter and options

In LinSim the options are divided in a settings_common.tcl for parameters common to all
linear accelerators. In settings_longterm.tcl there are options specific for the long time
step. For each accelerator there is also an accelerator specific file in e.g. settings_clic.tcl.
In this section all options are briefly described. They are sorted by functionality.

C.1. General Simulation Parameters

e data dir directory that holds large data files.
Default value: /afs/cern.ch/eng/clic/machine/LinSim

When no permanent AFS access, download the above directory (currently about
2.5 GB) to the local computer and set data_dir (best set in the file my_computer.tcl)

e parallel threads Number of threads/cores that should be used on a machine.
Default value: 1

e dir name Output directory. Default value: default_output

e machine name Accelerator, possible values are: CLIC, ILC, FACET and ATF2.
Default value: CLIC

e nr machines Number of machines (seeds) to simulate. Default value: 1

e nr_time_steps_long Number of iterations with a longer time per machine. Default
value: 1

e nr time steps_short Number of pulse to pulse iterations (time_steps) per machine
per long time step. Default value: 10

e user_code Individual user test file.
Default value: ”tests/user_test_template_code.m”

e debug Produce additional files and printout, and don’t delete intermediate files.
Default value: 0

e global_seed Global seed. Default value: 1

e specific_random stream Set a specific random seed stream in PLACET. Possi-
ble values are ”Misalignments”, ”Instrumentation”, ” Groundmotion”, ”Cavity”,
?User”, ”Default”, ” Survey”, ”Select”, ” Radiation”. See the PLACET manual for
details. Default value: "non” (no specific random seed)

e specific_seed Specific random seed. Only set when specific_random_stream is set

to a value different than "non”. Default value: "non

23

C.2.

C.3.

Lattice Parameters

use_rtml Use Ring to Main Linac lattice.
use main linac Use Main Linac lattice.
use_bds Use Beam Delivery System lattice.

use_only_one_arm For colliders. Use one beamline or two (electron and positron).
Default value: 0

Beam Parameters

Default values are for CLIC accelerator.

produce_beam from main linac If Main Linac not used, then option to produce
realistic initial beam from ML lattice. Default value: 0

params (ch) Default value: 3.72e¢9

params (emitt_x) Default value: 6.6

params (emitt_y) Default value: 0.2

params (sigma_z) Default value: 44.0

params (e_spread) Default value: 1.3

params (offset) Default value: 0.0

params (waist_y) Default value: 0.0

params (linerr) Default value: everything
params (wgt) Default value: 1000.0
params (quad misalign) Default value: 0.000
params(qjitter) Default value: 0.0
lattice_def_file_name Default value: ”phase.def”
phase Default value: 8a

e_initial_linac Default value: 9.0
e_initial_bds Default value: 1500.0
n_slice Default value: 25

n_part Default value: 15

24

e frac_lambda Default value: 0.25

e n_total Default value: 50000

e n _bunches Default value: 1

e n Default value: [expr $n_total/$n slice |
e scale Default value: 1.0

e bds_version CLIC BDS version. Current options are v_10.01_25 and v_10-10_11.
Default value: ”v_10_.01_25"

e use_linac_scaling Linac scaling. Default value: 0
e linac_scaling factor Scaling factor. Default value: 1

e use_long wf ml Use of longitudinal wake fields in main linac accelerating struc-
tures. Default value: 1

e use_trans_wf_ml Use of transverse wake fields in main linac accelerating structures.
Default value: 1
C.3.1. Phase configuration

Parameter to vary the phase configuration of the main linac. The value in experimen-
tal_phase_param are only set if use_experimental _phase = 1. The gradient is scaled such
that the correct energy is achieved approx. in the middle part of the accelerator.

e use_experimental _phase ml Default value: 0

e experimental _phase_params(nr_cav_0) Default value: 144

e experimental_phase params(phase_0) Default value: 8.0

e experimental_phase_params(nr_cav_1) Default value: 54940

e experimental_phase_params(phase_1) Default value: 8.0

e experimental_phase_params(nr_cav_2) Default value: 1000000
e experimental_phase_params(phase_2) Default value: 30.0

e experimental _phase params(gradient) Default value: 0.0954853244727

C.3.2. Beam-beam
e use_beam_beam Use beam-beam interaction from GUINEA-PIG.

e use centred beam lumi For beam-beam interaction centre beam in position. De-
fault value: 0

e use _centred_and non_centred_lumi In case of artificially centering the beam also
calculate the luminosity for the non-centering case. Default value: 0

25

C.3.3. GUINEA-PIG
GUINEA-PIG parameters. See GUINEA-PIG manual for details.

C.4.

gp_param(energy) Default value: 1500.0

gp_param(cut_x) Default value: 400.0

gp-param(cut_y) Default value: 15.0

gp-param(n_x) Default value: 128

gp-param(n_y) Default value: 256

gp_param(do_coherent) Default value: 1

gp-param(n_t) Default value: 1

gp-param(charge_sign) 0: no beam-beam force. Default value: -1.0
gp-param(waist_y) Default value: $params(waist_y)
gp-param(particles) Default value: [expr $params(ch)*1e-10]
gp-param(sigmaz) Default value: $params(sigma z)
gp-param(emitt_x) Default value: [expr $params(emitt_x)/10.]

gp_param(ecm min) Minimum energy for lumi_high to 99% of the nominal centre-
of-mass. Default value: [expr 2.0*$gp_param(energy)*0.99]

gp-param(seed) Default value: [expr $global seed*123 + 13]

gp-reset_seed Guinea-Pig seed (overrides GUINEA-PIG rndm _load setting!). De-
fault value: 1

Machine specific parameters

The machine specific parameters are found in an accelerator specific settings file e.g. set-
tings_clic.tcl. These define the beam parameters of the machine and directory structure.

delta_T_short Repetition rate in s.

delta_T_long Long term time step in s.

26

C.4.1. ATF2

BPM resolutions

stripline Resolution of stripline BPMs in pum, type 1. Default value: 1.0
stripline2 Resolution of stripline BPMs in pm, type 2. Default value: 1.0

font_stripline resolution Resolution of FONT stripline BPMs in pm. Default
value: 0.5

cband Resolution of c-band cavity BPMs in pym. Default value: 0.2

cband noatt Resolution of c-band non attenuated cavity BPMs. Default value:
0.05

sband Resolution of s-band cavity BPMs in ym. Default value: 1.0
ipbpm Resolution of IP BPMs in pm. Default value: 0.1

ipbpma Resolution of IP BPM A in pum. Default value: value of ipbpm
ipbpmb Resolution of IP BPM B in pum. Default value: value of ipbpm

ipbpmc Resolution of IP BPM C in ym. Default value: value of ipbpm

BPM resolution is dependent on charge with the formula R x /(A42%/¢? + 1), where
R is the usual resolution and A, in 1e10 number of particles, the charge dependent
part. This behaviour can be added with the following parameters:

use_bpm_charge_dependence Switch on charge dependent resolution.
Default value: 0

stripline _charge_dependence Charge dependent factor for stripline BPMs. De-
fault value: 0.69 (for 1 gm resolution)

font_stripline_charge dependence Charge dependent factor for FONT stripline
BPMs. Default value: 0;(unknown)

cband_charge _dependence Charge dependent factor for c-band cavity BPMs. De-
fault value: 0.46 (for 200 nm resolution

cband noatt_charge dependence Charge dependent factor for c-band non atten-
uated BPMs. Default value: 0.16 (for 30 nm resolution)

sband_charge _dependence Charge dependent factor for s-band cavity BPMs. De-
fault value: 0 (unknown)

ipbpm_charge dependence Charge dependent factor for IP BPMs. Default value:
0 (unknown)

Add 3 IPBPMs between QF21X and QM16FF (for nanoBPM study)

27

nanoBPMSetup Default value: 0
iptbpml Default value: ipbpm
iptbpm2 Default value: ipbpm
iptbpm3 Default value: ipbpm

skew_tilt tilt angle of skew quadrupoles (only for lattice version v.4.0). Default
value: 7/180 x 45

beamline version name Beamline version. Options are: ”ATF2” (v5.2),
"ATF2.v5.17, ”ATF2_v4.0”, 7UL” (UltraLow (v4.2)) Default value: ”ATF2_v5.2”

optics Optics settings. Can be changed only for lattice version 5. Options are
(analog to Mad8): "nominal” or "BX1BY1m” (beta*40mm x 0.1mm), BX10BY1m
(beta* 4mm x 0.1mm), BX10BY1nl (beta* 4mm x 0.1mm, nonlinear optimisation
by G. White). Default value: ”"BX10BY1nl”

sext Switch sextupoles on or off. For lattice version 4.0. Default value: 1

use_sextupole Switch sextupoles on or off. For lattice versions 5. Default value:
1

use_skewsextupoles Switch skew sextupoles on or off. Strength is set to zero.
Default value: 1

use multipole_components Switch on/off multipole components (all multipoles
with length 0). Default value: 1

e0_start Reference beamline energy (can be different from beam energy) Default
value: 1.3 (GeV)

use_set_file Set machine according to ATF2 ’set’ file. Default value: 0

set_file name Set file name e.g. ”set13feb22_0718.dat”, to be put in directory
‘data’. Default value: ””

bunch_spacing Bunch spacing for multi-bunch operation. Default value: 150e-9
(s)

use_dispersion Add initial dispersion to beam. Default value: 0

dispersion x 0 [um]

dispersion xp 0 [urad]

dispersion_y 0 [um]

dispersion_yp 0 [urad]

28

use_xycoupling Add initial xy-coupling. Default value: 0
xycoupling angle 0 [rad]
use_energy_jitter Use energy jitter. Default value: 0

energy_jitter 2e-4 (relative)

Values for FONT experiment

use_font 0 Kicker strength in GeV*urad (for fontkl 10um change in direction
fontpl bpm corresponds to about 23.4 urad*GeV (keV))

fontkl_strengthx Default value: 0.0
fontkl_strengthy Default value: 0.0
fontk2_strengthx Default value: 0.0
fontk2_strengthy Default value: 0.0
ipkicker_strengthx Default value: 0.0
ipkicker_strengthy Default value: 0.0
use_font_jitter Default value: 0

fontkl strengthx_sigma Default value: 0.0
fontkl strengthy sigma Default value: 0.0
fontk2_strengthx_sigma Default value: 0.0
fontk2_strengthy sigma Default value: 0.0
mfb2ffkicker_strengthx_sigma Default value: 0.0
mfb2ffkicker_strengthy_sigma Default value: 0.0
ipkicker_strengthx _sigma Default value: 0.0
ipkicker_strengthy_sigma Default value: 0.0
use_qdOff_strength Input QDO strength. Default value: 0
qd0ff_strength Default value: -0.88554 [GeV /m]

use_qd0ff_current input QDO strength in current, overrides QDO strength setting.
Default value: 0

qd0ff_current Default value: 131.631 [A]

29

use_qdOff _position Set QDO position. Default value: 0
qd0ff_positionx Default value: 0.0 [y m]

qdOff positiony Default value: 0.0 [y m]

qd0ff_roll Default value: 0.0 [p rad]

use_qf1ff_strength Input QF1FF strength setting. Default value: 0
qf 1ff_strength Default value: 0.48034 [GeV/m]

use_qf1ff_current Input QF1FF strength in current, overrides QF1FF strength
setting. Default value: 0

qf1ff_current Default value: 124.376 [A]
use_qf1ff _current_scan Default value: 0
qf1ff_current_scan_step Default value: 0.1 [A]
use_qf1ff_position Default value: 0

qf1ff positionx Default value: 0.0 [pm]

qf 1ff_positiony Default value: 0.0 [pm)]
qf1ff_roll Default value: 0.0 [urad]

FONTFeedback FONT feedback in FONT region, needs use_font 1. Default value:
0

FONTFeedbackX FONT feedback for horizontal direction. Default value: 0
FONTFeedbackY FONT feedback for vertical direction. Default value: 1
FONTFeedbackP1 simple FONTfeedback on BPM FONTP1. Default value: 1

FONTFeedbackP2 simple FONTfeedback on BPM FONTP2. Default value: 0

Feedback relation between bpm reading and kicker strengths.

FONTP1slope FONT kicker 1 to FONTP1 [urad*GeV /um].
Default value: e_initial/0.548 (e0 / distance K1 - P1)

FONTP2slope FONT kicker 2 to FONTP2 [urad*GeV /um].
Default value: e_initial/0.525 (e0 / distance K2 - P2)

IP feedback with kicker at IP using IPA and IPB
IPFeedback Switch on/off IP feedback. Default value: 0

IPFeedbackX Switch on/off IP feedback in horizontal direction. Default value: 0

30

IPFeedbackY Switch on/off IP feedback in horizontal direction. Default value: 1

Feedback objective, can also be used to correct systematic bunch offset
IPFeedbackXObjective Default value: 0.0 [pm]
IPFeedbackYObjective Default value: 0.0 [pm]

IPAslope IP kicker gain to IPA/IPB [urad*GeV/um]. Default value depends on
lattice version (e0 / (distance kicker - IPA)

IPBslope IP kicker to IPB. Default value: €0 / (distance kicker - IPB)
IPFeedbackIPA Simple IPfeedback on BPM IPA. Default value: 1

IPFeedbackIPB Simple [Pfeedback on BPM IPB. Default value: 0

Imperfections - Dynamic and Static

use_beam_jitter Switch on/off beam jitter. Default value: 0
beam_jitter_x Default value: 0 [pm)]

beam_jitter_y Default value: 0 [pm)]

beam_jitter_xp Default value: 0 [urad]

beam_jitter_yp Default value: 0 [urad]

use_bunch_jitter Switch on/off bunch jitter. Default value: 0
bunch_jitter_x Default value: 0 [pm]

bunch_jitter_y Default value: 0 [um]

bunch_jitter_xp Default value: 0 [prad]

bunch_jitter_yp Default value: 0 [urad]
use_bunch_correlation Bunch to bunch correlation. Default value: 0
bunchTobunchCorrelation Default value:. 1.0

use_bunch_off Bunch offset. Default value: 0

bunch offset_x Default value: 0 [um]

bunch_offset_y Default value: 0 [pm]

bunch_offset_xp Default value: 0 [prad]

bunch offset_yp Default value: 0 [urad]

31

CBPM Wakefield experiment

use_wakefield Default value: 0

use_wakefield _shortbunch Use short bunch approximation to calculate wakefield.
Default value: 1

wakefield shortbunch Default value: 300 [um]

wakeFieldSetup Add wake field setup between QD10BFF and QD10AFF. Default
value: 0 Select one of the following setups:

oneRefCavity 1 reference cavity (November 2012). Default value: 0
twoRefCavity 2 reference cavities (December 2012 - April 2013). Default value: 0

bellowWakeStudy Bellow setup instead of 2 reference cavities. http://atf .kek.
jp/twiki/bin/view/ATFlogbook/Log20130419s. Default value: 0

oneBellow 1 bellow (May - June 2013). Default value: 0
oneBellowShielded 1 bellow (June 2013) - no wakefield. Default value: 0

wakeFieldSetupTiltedBellow Use tilted bellow description instead of moving
bellows halfway. Default value: 0

wakeFieldSetupQuadMove Set move subsequent quadrupoles also a little. Default
value: 0

wakeFieldSetup_pos Wakefield setup position. Default value: 0 [mm]. Should be
between -4.6mm and +4.6mm

wakeFieldSetup_scan Increase position by 1.0 mm per time step in y. Default
value: 0

Steering

Response matrix calculation

response matrix_calc Calculate response matrix. Default value: 0
step_size_R_x Horizontal step size to calculate response matrix. Default value: 1
step_size_R_y Vertical step size to calculate response matrix. Default value: 1
response matrix_load Load response matrix. Default value: 0

response matrix_file File name of loaded response matrix.
Default value: ”../Response/Response.dat”

32

http://atf.kek.jp/twiki/bin/view/ATFlogbook/Log20130419s
http://atf.kek.jp/twiki/bin/view/ATFlogbook/Log20130419s

use_bpm_set_value Value has to be "bpm_center” for ATF2.
use_steering Apply any steering (need to choose one or more). Default value: 0
steering_iter Number of iterations. Default value: 3

steering select_bpms Option to select a subset of bpms used for DFS or WE'S
(see machine_setup.m). Default value: 0

steering beta Beta parameter, cuts on singular values (the higher, the harder
the cut). Default value: 6

use_one_to_one_steering One to one steering. Default value: 0
one_to_one_steering weight 1-to-1 steering weight. Default value: 5

one_to_one_steering start Bunch number start for 1-to-1 steering. Default
value: -1

one_to_one_steering end Bunch number end. Default value: 9999

use_dfs Dispersion free steering. Default value: 0

dfs_dE Relative energy of second beam. Default value: 0.995

dfs_weight Default value: 5

use_wfs Wakefield free steering. Default value: 0

wfs_dcharge Relative charge of second beam. Default value: 0.8

wis_weight Omega weight, dependent on bpm_resolution and alignment. Default

value: 5

System identification

identification_switch Default value: 0

alpha_x Alpha has for the ATF2 simulations the meaning of a projected beam size
growth in percent. Default value: 5

alpha_y Default value: 5

lambda_x Default value: 0.997

lambda_y Default value: 0.997

rls_algo 1 ... standard algo, 2 ... modified algo, 3 ... full algo. Default value: 3

init P_algo 1 ... diag(0.1), 2 ... find_init_P function. Default value: 2

33

e init_P_value Default value: 0.1

e excit_type 1 ... random excit, 2 ... one corrector after the other excit (necessary
for rls_algo 6), note the excit_type 3 which is an excitation with constant maximal
BPM offset due to the excitation, is not supported so far. 4 ... corresponds to a
test case for the initial scaling of the emittance growth (determination of factors).
Default value: 1

Postprocessing Parameters

e save bpm_readings nonoise Save BPM readings without noise. Default value: 0
e bpm_readings file name _x Default value: ”bpmreadingsx.dat”
e bpm_readings file name_y Default value: ”bpmreadingsy.dat”

e magnetPosition readings_file name _x Default value:
”magnetPositionreadingsx.dat”

e magnetPosition readings file name_y Default value:
”"magnetPositionreadingsy.dat”

e ip feedback file name Default value: "IPFeedback.dat”
e meas_station_file_name Default value: "meas_station.dat”

e save_beam ff_start Save beam at start of Final Focus (before MQM16FF).
Default value: 1

e meas_station ff_start_file name Default value: "meas_station_ff_start.dat”
e save_beam mfb2ff Save beam at MFB2FF. Default value: 1

e meas_station mfb2ff file name Default value: ”meas_station_mfb2ff.dat”

e save_beam_ip Save beam at IP. Default value: 1

e meas_station_ip_file name Default value: "meas_station_ip.dat”

e use disp_free_emittance Emittance calculated as if dispersion is corrected. De-
fault value: 0

C.4.2. CLIC

e use_collimators For BDS version 10_.01_25 only. Default value: 0
e use nonlinear collimation For BDS version 10_01_25 only. Default value: 0

e wmetode Wake method calculation 0: analytical formula, 1: wakefield tables. De-
fault value: 0

34

e taperl taperl defines the length of the tapered part of the spoiler (here it is defined

to conform 88 mrad taper angle). Default value: 0.09

C.4.3. FACET

No specific parameters are defined for FACET at the moment.

C.4.4. ILC

e tdr_bds_params_elec and tdr_bds_params_posi Technical Design Report param-

C.5.

eters of the BDS.

Logging Parameters

multipulse nr Number of bunch trains that are used to calculated the multipulse
quantities. Default value: 10

save meas_stations Store data at the measurement stations (after RTML, after
ML, before FD and at IP). Switching off will remove the first initial tracking step.
Default value: 1

add_header Add headers to file. Default value: 1

save_string Additional string to be added to output filenames. Default value

save_beam data Defines if in general, the beams itself and the according correlation
data should be saved. Sometimes this is not necessary and/or would corrupt the
multi-pulse calculation. Default value: 1

save beam file ip Save beam files at IP (careful 10 MB per iteration!). Default
value: 0

save beam file freq Frequency of saving beam files (once every x iterations).
Default value: 50

twiss_output Output twiss parameter file. Default value: 0

eval beam_shift Include beam offsets and angles to calculate multipulse emit-
tance. Default value: 1

use_bpm_storing Default value: 0
bpm_storing no noise Default value: 1
use_gm storing Default value: 0
use_ip_corr_storing Default value: 0

use_ ml_corr_storing Default value: 0

35

use machine_status_storing Default value: 0

load machine Load machine status (to be saved with use_machine status_storing).
Default value: 0

load_machine_electron Electron beamline, absolute path.
Default value: ”${script_dir}/machine_status_electron_1.dat”

load machine_positron Positron beamline, absolute path.
Default value: ”${script_dir}/machine_status_positron_1.dat”

use_bpm_callback Callback function in BPMs, to store the beam in specific BPMs
for beam physics analysis. Default value: 0

bpm_callback_start_index First BPM to call callback function. Default value: 1

bpm_callback_end_index Last BPM to call callback function. If it is < 0.5 it
means: go to the end. Default value: -1

bpm_callback_function Callback function. Values are:
1: store the full beam

2: store the beam parameters.

Default value: 1

use_gp-callback Callback function in quadrupoles, to store the beam in specific
quadrupoles to calculate the multi-pulse emittance. Default value: 0

gp-callback _start_index First quad to call callback function. Default value: 1
gp-callback_end _index Last quad to call callback function. Default value: -1

gp-callback_function Callback function. Values are:
1: store the full beam

2: store the beam parameters.

Default value: 1

use_storage_in_gps Options to store beam information (different than BPM read-
ings) all along the beam line (in the QPs). Default value: 0

use_storage_in_gps_mpe Multipulse emittance. Default value: 0
use_storage_in_gps_spe Single pulse emittance. Default value: 0
use_storage_in_gps_sigmaE Sigma energy. Default value: 0
use_storage_in_gps_E Energy. Default value: 0

tracking output_string Output for tracking in each element. See PLACET man-
ual for details. Default value: ”%s %ex %sex %x 0 %ey %sey %y %Env 0 %n” (s
position; emittance x; beamsize x; x position; 0; emittance y; beamsize y; energy;
number of particles)

36

C.6.

Imperfections

bpm_noise Use the BPM resolution, if 0 then 0.0 resolution. Default value: 1
bpm_resolution ml BPM resolution Main Linac in pmeter. Default value: 0.1
bpm_resolution_bds BPM resolution BDS in pmeter. Default value: 0.05
stabilization noise_x Default value: 0

stabilization noise_y Default value: 0

stabilization noise_type Default value: ”white_uniform”

stabilization noise_param Default value: 0.001

stabilization noise_section Parameter could be "ALL’, 'ML’, 'BDS’ . Default
value: ” ALL”

stabilization scaling error_x Default value: 0
stabilization_scaling error_y Default value: 0
stabilization_scaling sigma Default value: 0.001

stabilization_scaling section Parameter could be ’ALL’, "ML’, 'BDS’. De-
fault value: ”ALL”

bpm_scaling_error_x Default value: 0
bpm_scaling error_y Default value: 0
bpm_scaling sigma Default value: 0.001

bpm_scaling section Parameter could be ’ALL’, 'ML’, 'BDS’. Default value:
” ALL”

C.6.1. RF jitter variables

Each default value corresponds to 1% lumi loss. Phi is in degree and grad in GV/m

use_rf_jitter Default value: 0

For random train to train jitter
phi_linac Default value: 0.0
phi_decel Default value: 0.0
grad_linac Default value: 0.00000

grad_decel Default value: 0.0000

For random jitter constant for one machine

37

e phi_linac machine Default value: 0.0
e phi_decel machine Default value: 0.0
e grad linac machine Default value: 0.0

e grad decel machine Default value: 0.0

For a deterministic acceleration change for one machine
e phi_linac machine_const Default value: 0.0

e grad_linac_machine_const Default value: 0.0

Procedure to remove the orbit created by dispersion
e use disp_suppression_x Default value: 0

e use _disp_suppression_y Default value: 0

C.6.2. Initial beam jitter

Initial jitter: 1 ... beam offset/angle jitter, 2 ... energy jitter, 3 ... energy chirp, 13 ...
beam offset/angle jitter and energy chirp

e initial_imperfection_type_x Default value: 0
e initial_imperfection_type_y Default value: 0
e initial_jitter_x in pum. Default value: 0

e initial_jitter_y in pum. Default value: 0

e initial_energy_jitter in GeV. Default value: 0

e initial_energy _chirp in %. Default value: 0

C.6.3. Constant initial beam energy variation

e use_initial_beam_variation Default value: 0

e initial_energy_var_const Default value: 0.0

C.6.4. Quadrupole strength jitter

e use_quad_strength_jitter Default value: 0
e quad_strength sigma ml Relative. Default value: 0
e quad strength sigma bds Default value: 0

e quad_strength sigma ff Default value: 0

38

e quad_strength sigma fd Default value: 0
e quad_strength sigma ml machine Relative. Default value: 0

e quad _strength sigma bds_machine Default value: 0

quad_strength sigma ff machine Default value: 0

e quad_strength sigma fd machine Default value: 0

C.6.5. Quadrupole position jitter

e use_quad_position_jitter Default value: 0

e quad position_sigma ml in pum. Default value: 0
e quad_position_sigma bds Default value: 0

e quad position_sigma ff Default value: 0

e quad position_sigma fd Default value: 0

C.6.6. Quadrupole roll jitter

e use_quad_roll_jitter Default value: 0

e quad roll sigma ml in ym. Default value: 0
e quad_roll sigma bds Default value: 0

e quad roll sigma ff Default value: 0

e quad roll sigma fd Default value: 0

e use_quad-roll_actuation Default value: 0

e quad roll x _const in purad/um. Default value: 5.15

C.6.7. System ldentification parameters

e identification_switch Default value: 0

e perfect_controller matrix Default value: 0

39

C.6.8. BPM drifts

use_bpm_drift Default value: 0
bpm_drift_sigma ml in ym. Default value: 0.44
bpm_drift_sigma bds in pm. Default value: 0.44
bpm_drift_sigma ff in ym. Default value: 0

bpm_drift_sigma fd in ym. Default value: 0

C.6.9. component failures (static)

Possible probability distributions, ”random”, ”block_begin”, ”block_end”,
"block_end_ml”, ”block_begin_bds”, ”list”

use_bpm_failure Default value: 0
bpm_failure(prob) Chance of a failed BPM. Default value: 0

bpm_failure(list) Element numbers of failed BPMs (needs distribution list).
Default value:

bpm_failure(distribution) Default value: "random”
use_corr_failure Default value: 0
corr_failure(prob) Chance of a failed corrector. Default value: 0

corr_failure(list) Element numbers of failed correctors (needs distribution
list). Default value:

corr_failure(distribution) Default value: ”random”
use_quad_stab_failure Default value: 0
quad_stab_failure(prob) Chance of a failed quadrupole. Default value: 0

quad_stab_failure(list) Element numbers of failed quadrupoles (needs distri-
bution list). Default value:

quad_stab_failure(distribution) Default value: "random”

C.6.10. add noise to response matrix

use_noisy matrix_x Default value: 0
use_noisy matrix_y Default value: 0
R_file name_x Default value: ”R_noisy x.dat”

R_file name_y Default value: ”R_noisy_y.dat”

40

C.6.11. L-FB gain errors

use_gain error _x Default value: 0
use_gain_error_y Default value: 0
gain error_std_x Default value: 0.1

gain error_std_y Default value: 0.1

C.6.12. Wake field monitor offset

C.7.

use_wakefield monitor_imperfections Default value: 0
wakefield monitor_offset_x in pum. Standard value: 3.5. Default value: 0

wakefield monitor_offset_y in ym. Standard value: 3.5. Default value: 0

Ground Motion

ground-motion_x Default value: 0
ground motion_y Default value: 0

groundmotion(type) 0: none, 1: ATL, 2: ground motion generator. Default
value: 2

groundmotion(model) Ground motion model. Options are ”A”,”B”, ”B10”, 7 C”,
”D”. Default value: ”"B”

groundmotion(filtertype) 0: no filter, 1: use filters specified in x and y for the
whole beamline. Default value: 1

groundmotion(filtertype_x) Default value: "local FB_lateral v2.dat”
groundmotion(filtertype_y) Default value: ”local FB_vertical v2.dat”

groundmotion(preisolator) 0: no preisolator, 1: simple version F. Ramos et
al, 2: mech. feedback B. Caron et al., 3: F. Ramos et al. including tilt motion.
Default value: 3

groundmotion(t_start) Start after perfect beamline in s. Default value: 0
gm_ip0 Move ground with respect to IP. Default value: 1

gm_cav_stab Move cavities with stabilisation. Default value: 0

ground motion_long x Ground motion long term, ATL.Default value: 0

ground_motion_long_y Default value: 0

41

C.8.

C.9.

use_initial ATL Initial static misalignment with ATL. Default value: 0
delta T_static Time for ATL static misalignment in s. Default value: 0
groundmotion_long(ml) Default value: 1

groundmotion_long(bds) Default value: 1

groundmotion_long(time_step) Default value: $delta_T long

Alignment

use misalignment Start from (non-)perfect machine. Default value: 0

Misalignments in both x and y

alignment_bpm_sigma in pgm. Default value: 10
alignment_dipole_sigma in pum.Default value: 10
alignment_quad_sigma in pm.Default value: 10
alignment_quad-roll_sigma in um.Default value: 100
alignment mult_sigma in prad. Default value: 100

alignment_struct_tilt_sigma in prad. Default value: 140

Tracking

Specific tracking options.

use multipole Switch multipoles (sextupoles and higher order) on or off. Default
value: 0

C.9.1. Synchrotron radiation

Default is off for main linac and RTML for CPU reasons, on for BDS. Always on for
sbends.

quad_synrad_rtml Synchrotron radiation in quadrupoles in RTML. Default value:
0

mult_synrad rtml Synchrotron radiation in multipoles in RTML. Default value:
0

sbend_synrad_rtml Synchrotron radiation in sbends in RTML. Default value: 0

quad_synrad ml Synchrotron radiation in quadrupoles in Main Linac. Default
value: 0

42

e mult_synrad ml Synchrotron radiation in multipoles in Main Linac. Default value:
0

e sbend synrad ml Synchrotron radiation in sbends in Main Linac. Default value:
0

e quad_synrad_bds Synchrotron radiation in quadrupoles in BDS. Default value: 0
e mult_synrad _bds Synchrotron radiation in multipoles in BDS. Default value: 0

e sbend synrad bds Synchrotron radiation in sbends in BDS. Default value: 0

C.10. Orbit feedback

Controller Parameters. See orbit controller paper for details.

e use_controller_x Default value: 0
e use_controller_y Default value: 0

e dipole_correctors Dipole correctors or quadrupole offsets as orbit correctors.
Default value: 0

e controller_type_spatial x Controller type 1: full matrix, 2: non-scaling case,
3: scaling case, 4: loaded coefficients, 5: experimental case. Default value: 4

e controller_type_spatial_y Default value: 4

e gain file name x File name of gains in x.
Default value: ”gains_ B_-V2_x_V2_load.dat”

e gain file name_y File name of gains in y.
Default value: ”gains_ B_-V2_y_V2_load.dat”

e max_gain x Default value: 0.01

e max_gain_y Default value: 0.01

e nr_svl _x Default value: 16

e nr _svl_y Default value: 16

e nr_sv2_x Default value: 300

e nr_sv2_y Default value: 300

e controller_gainl_y Default value: 1
e controller_gainl x Default value: 1

e controller_gain2_y Default value: 0.05

43

controller_gain2 x Default value: 0.05
controller_gain3_y Default value: 0.0001
controller_gain3_x Default value: 0.0001

controller_type_frequency_x Controller type 1: integrator, 2: integrator, low-
pass (no lead), 3: complex controller (see below). Default value: 3

controller_type_frequency_y Default value: 3
T_low Time constant for the low-pass. Default value: 0.1;

orbit_filter_algo_x Orbit_filter_algo

1: explicit but complicated implementation (at the moment just integrator, low-
pass and lead).

2: short and fast implementation (integrator, low-pass, lead element and 0.3 Hz
peak).

Default value: 2

orbit_filter_algo_y Default value: 2

use_bpm_set_value Value can be ”dispersion_init” or "bpm_center”. Default value:
”dispersion_init”

use_bpm_scaling Use a scaling of the BPM readings for the controller. Default
value: 0

C.11. IP feedback Parameters

IP feedback correction is independent of orbit correction. There are two types, from
train to train (intertrain) and within one train (intratrain). For historical reasons they
are called ip_feedback and ip_intratrain_feedback

C.11.1. Intertrain feedback

use_ip_feedback Default value: 0
use_ip_feedback x Default value: 1

use_ip_feedback_y Default value: 1

Different ip feedback: linear ip feedback, second order (pid) or Annecy (LAPP)
optimised. For x always linear feedback is used.

use_ip_feedback_linear Default value: 0
gain bb_x Gain factor for linear feedback. Default value: 0.5

gain bb_y Default value: 0.5

44

e use_ip_feedback pid Default value: 1

e pid_gain p Default value: 0.3

e pid_gain_d Default value: 0.5

e use_ip_feedback_annecy Default value: 0

e ip_feedback_annecy_choice 0: fb 1:fba 2:pid 3:pida. Default value: 1

Extra Annecy options

e external ground_cms Default value: 0
e use_defl_angle Default value: 1
e outputfile_ip Default value: 0

e outputfile_ip_controller Default value: ”Beam_correction_log_4”

Properties of the BPM after the IP
e bpm_ip_dist Distance BPM-IP in m. Default value: 3.0
e bpm_ip noise Use BPM resolution. Default value: 0

e bpm_ip_res Resolution of BPM at IP in ym. Default value: 1.0

C.11.2. Intratrain feedback

e use_ip_intra feedback Default value: 0
e ip_intra_latency Latency time of system in ns. Default value: 37
e gain bb_intra_x Gain factors for linear feedback. Default value: 0.28

e gain bb_intra_y Gain factors for linear feedback. Default value: 0.28

Properties of the BPM after the IP

e bpm_ip_intra_dist Distance BPM-IP in m. Default value: 3.0
e bpm_ip_intra noise Use BPM resolution. Default value: 0

e bpm_ip_intra res Resolution of BPM at IP um. Default value: 1.0

45

C.12. BDS Tuning
e use_bds_knobs Use of BDS knobs. Default value: 0

e use_steering Default value: 0

Response matrix can be loaded with R_file_name_x and R_file_name_y

C.12.1. Use of Beam based alignment

e use_one_to_one_steering Default value: 0

e one_to_one_steering weight Default value: 0.5

C.12.2. Dispersion Free Steering

e use_dfs Default value: 0
e dfs_deltae Default value: 0.001
e dfs_beta Default value: 1

e dfs weight Default value: 1.0

C.13. Long term steering

e use_bds_knobs_longterm Default value: 0

C.13.1. Basic steering

e use basic_steering Default value: 0

e basic_steering method
1: 1-1 steering
2: all to all steering.
Default value: 2

e basic_steering option
1: corr everywhere
2: corr ML
3: corr ML - BPM ML
Default value: 1

e basic_steering matrix name_x Default value: "R0_x_complete.dat”
e basic_steering matrix name_y Default value: "R0_y_complete.dat”
e basic_steering modulo Default value: 1

e basic_steering beta Default value: 1

46

C.13.2. Online dispersion estimation / Dispersion free steering

use_online disp_estimation Default value: 0
use_initial rfalign Default value: 1
use_dfs_local_excitation Default value: 1
dfs_estimation_cycles Default value: 25
use_disp_estimation_storing Default value: 0
dfs_delta_grad Default value: 0.01

dfs_delta_phi Default value: 0.00
use_theoretical dfs_omega Default value: 1
dfs_omega_value Default value: 1

dfs_beta_value Default value: 1

dfs nr _bins Default value: 36

dfs_bin_overlap 0.5: full overlap. Default value: 0.5
dfs_disp noise Default value: 0

dfs_matrix noise Default value: 0

dfs_nr_runs Default value: 1

dfs_gain Default value: 1

dfs_delta T Default value: $delta_T long
use_dfs_imperfect_sys_knowledge Default value: 0

dfs_imperfect_sys_knowledge_ y_steering file name Default value:
” Jenergy _imperfection/grad_jitter linac_decel/Delta_E_0_-0/qp/y/
R_gp_y_energy jitter_linac_0001_decel _0005_seed_1.dat.gz”

dfs_imperfect_sys_knowledge_y_dfs_file name Default value:
” Jenergy imperfection/grad_jitter_linac_decel /Delta_E_0_.001/qp/y/
R_gp_y_energy jitter_linac_0001_decel _0005_seed_1.dat.gz”

47

C.14. Specific Simulation Parameters

response matrix_calc Calculate response matrix mode, will exit after finished.
Default value: 0

response matrix_calc_longterm Default value: 0

use_fd_model Use Final Doublet model to predict beam position at IP. Default
value: 0

load_beam_bds Reload beam after bds. Default value: 0

D. Description of output files

acc.dat A file for Guinea-Pig that holds information about how the collision was
simulated.

beam.dat The last beam that was tracked. This beam can be read into PLACET
and used in a subsequent simulation.

girder_elec/positron.dat A file that holds the offsets of all the girders in the
elec/positron line.

meas_station_n _machine_n.dat A file that has recorded several parameters at a
certain location in the beamline. See section [3.3] for the default locations.

rndm.save The initial state of the random number generator of Guinea-Pig.
settings.dat The settings that were used for this simulation.

tracking results_1.dat A file that holds beam data at every quadrupole loca-
tion.

Additional output files can be saved with various options, see Section

E. Description of parameters available for user scripts

This section gives a selection of the parameters and variables readily available in user
scripts. The list is certainly not exhaustive.

E.1.

Element indices

The indices are a n x m matrix where n is the number of beamlines (1 or 2) and
m the number of indices. These can be used to set properties of the element with
placet_set_element_attribute.

General element types:

all_index Indices of all elements.

48

e bpm_index Indices of BPMs.

e corr_index Indices of all correctors used in the orbit feedback (dipoles or quadrupoles
as specified).

e drift_index Indices of drifts.

e dipole_index Indices of dipoles.

e gp_index Indices of quadrupoles.

e mult_index Indices of multipoles (sextupoles and higher).

e cav_index Indices of accelerating cavities.

Many specific elements indices are also defined. This list is not exhaustive, some
examples:

e index_bpm/dipole_rtml/ml/bds_start/end The index of the first / last bpm /
dipole of the RTML, ML or BDS.

e index_qd0 The index of QD0 magnet.

E.2. Accelerator and simulation status

Many parameters about the current status of the accelerator are available. Here are
some examples:

e bpm readings The BPM readings including noise (if specified). A 3-d array
(x,y,beamline).

e tracking results.Lumi(high) The (peak) luminosity of the last bunch crossing.
e tracking results.Angle x/y The horizontal/vertical beam deflection angle.

e time step_index short/long The short/long time step where the simulation is
at.

e sim mode The mode where the execution is in. This is explained in Section

49

F. Python Analysis Documentation

TrackingAnalysis Documentation, Release 1.0

Tracking Analysis Classes

if used within PLACET use a non-interactive backend like Agg http://matplotlib.org/faq/usage_faq:

_mpl.use('Agg") ‘

class TrackingAnalysis.BeamlineStudy (directory="output/’, file-
NameX="gm_x_elec_machine_I.dat’, file-
NameY="gm_y_elec_machine_I.dat’, begin=None,

end=None, s=[], color="b’, figureNumber=200, title="")
Class for plotting the beamline from a text file

Example:

import TrackingStudy
TrackingAnalysis.BeamlineStudy ()

class TrackingAnalysis.MeasurementStation (directory="output/’, file-
Name="meas_station_3_machine_I.dat’, label="",
new=False)

Class for plotting results from a text file

Example:

import TrackingAnalysis
TrackingAnalysis.MeasurementStation ()

class TrackingAnalysis.MeasurementStationArray (directory="*, label="", color="b’, parame-

ter=1, figureNr=1000)
Class for plotting results from a list of MeasurementStation

Example:

import TrackingAnalysis
TrackingAnalysis.MeasurementStationArray ()

class TrackingAnalysis.OrbitStudy (directory="output/’, fileNameX="bpm_meas_x_elec_machine_1.dat’,
fileNameY="bpm_meas_y_elec_machine_I.dat’, begin=None,
end=None, onlyLast=True, s=[], color="b’, figureNum-
ber=100, title="")
Class for plotting the orbit from a text file
Example:: import TrackingStudy TrackingAnalysis.OrbitStudy()

class TrackingAnalysis. TrackingStudy (directory="output/’, fileName="tracking_results_Il.mat’,
fileNameNominal="*, label="tracking’, machineNum-
ber=1, positronLine=False, orbit=False, beamline=False,

beamPlot=False)
Class for plotting the tracking results from a text file

Example:

import TrackingAnalysis
TrackingAnalysis.TrackingStudy ()

G. Brief introduction to scripting languages

G.1. Tdl

Tecl (Tool Command Language) is a scripting language created by John Ousterhout
The following is taken from http://en.wikipedia.org/wiki/Tcl#Features!

50

http://en.wikipedia.org/wiki/Tcl#Features

A Tcl script consists of several command invocations. A command invocation is a list
of words separated by whitespace and terminated by a newline or semicolon.

word0 wordl word2 ... wordN

The first word is the name of a command, which is not built into the language, but
which is in the library. The following words are arguments. So we have:

commandName argumentl argument2 ... argumentN
An example, using the puts command to display a string on the host console, is:
puts "Hello, World!"

This sends the string ”Hello, World!” to the ’stdout’ device, with an appended newline
character. Variables and the results of other commands can be substituted inside strings
too, such as in this example where we use set and expr to store a calculation result in a
variable, and puts to print the result together with some explanatory text:

expr evaluates text string as an expression
set sum [expr 1+2+3+4+5]
puts "The sum of the numbers 1..5 is $sum."

with variables, it is faster to protect this string using curly braces
set x 1

set sum [expr {$x + 2 + 3 + 4 + 5}]

puts "The sum of the numbers 1..5 is $sum."

without curly braces, variables are substituted even before parsing
the expression

set x 2

set op *

set y 3

set res [expr xop$y]

puts "2 * 3 is $res."

There is one basic construct (the command) and a set of simple substitution rules.

Formally, words are either written as-is, with double-quotes around them (allowing
whitespace characters to be embedded), or with curly- brace characters around them,
which suppresses all substitutions inside (except for backslash-newline elimination). In
bare and double- quoted words, three types of substitution occur (once, in a single
left-to-right scan through the word):

e Command substitution replaces the contents of balanced square brackets with
the result of evaluating the script contained inside. For example, [expr 142+3] is
replaced with the result of evaluating the contained expression (i.e. 6) since that’s
what the expr command does.

o1

e Variable substitution replaces a dollar-sign followed by the name of a variable
with the contents of the variable. For example, ”$foo” is replaced with the contents
of the variable called ”foo”. The variable name may be surrounded in curly braces
so as to delimit what is and isn’t the variable name in otherwise ambiguous cases.

e Backslash substitution replaces a backslash followed by a letter with another
character. For example, ”\n” is replaced with a newline.

G.2. Octave

GNU Octave [5] is a high-level interpreted language, primarily intended for numerical
computations. It provides capabilities for the numerical solution of linear and nonlinear
problems, and for performing other numerical experiments. It also provides extensive
graphics capabilities for data visualization and manipulation. The Octave language is
quite similar to Matlab:

e Matrices as fundamental data type.
e Built-in support for complex numbers.
e Powerful built-in math functions and extensive function libraries.

e Extensibility in the form of user-defined functions.

G.3. Python

Python is a widely used general-purpose, high-level programming language. Its design
philosophy emphasises code readability, and its syntax allows programmers to express
concepts in fewer lines of code than would be possible in languages such as C++ or
Java. The language provides constructs intended to enable clear programs on both a
small and large scale. Python supports multiple programming paradigms, including
object-oriented, imperative and functional programming or procedural styles. It fea-
tures a dynamic type system and automatic memory management and has a large and
comprehensive standard library.

Python uses whitespace indentation, rather than curly braces or keywords, to delimit
blocks. An increase in indentation comes after certain statements; a decrease in in-
dentation signifies the end of the current block. Here is a simple python function that
demonstrates this:

def fib(n):
print ’n =’, n
if n > 1:
return n * fib(n - 1)
else:
print ’end of the line’
return 1

92

References

1]

2]

[11]

D. Schulte et al., The PLACET project, http://clicsw.web.cern.ch/clicsw,
CERN.

D. Schulte. Study of FElectromagnetic and Hadronic Background in the Interaction
Region of the TESLA Collider. PhD thesis, Universitdt Hamburg, 1996.

C. M. Pilato, B. Collins-Sussman and B. W. Fitzpatrick. Version Control with
Subversion. O’Reilly. 2004. ISBN 0-596-00448-6. full book online.

J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing
Series, 1994. ISBN: 0-201-63337-X.

J. W. Eaton. Octave. Technical report. https://www.gnu.org/software/octave.

Y. Renier, P. Bambade, and A. Sery. Tuning of a 2D ground motion generator for
ATF2. Technical Report LAL/RT 08-18, CARE/ELAN document-2008-005, ATF-
08-10, LAL, 2008.

B. Stroustrup. The C++ Programming Language. Addison-Wesley. 1997. ISBN 0-
201-88954-4.

Batch Service,http://information-technology.web.cern.ch/services/batch,

CERN.

J. Snuverink, J. Pfingstner, N. Fuster-Martinez, In Proc. of IPAC15, MOPJE029,
2015.

J. Snuverink, J. Pfingstner, Linear Collider Workshop 2014. http:
//agenda.linearcollider.org/event/6389/session/10/contribution/105/
material/slides/0.pdfl

The MacPorts Project, www.macports.org/.

93

http://clicsw.web.cern.ch/clicsw
https://www.gnu.org/software/octave
http://information-technology.web.cern.ch/services/batch
http://agenda.linearcollider.org/event/6389/session/10/contribution/105/material/slides/0.pdf
http://agenda.linearcollider.org/event/6389/session/10/contribution/105/material/slides/0.pdf
http://agenda.linearcollider.org/event/6389/session/10/contribution/105/material/slides/0.pdf
www.macports.org/

	CLIC cov page - Snuverink
	LinSim
	Introduction and purpose
	Simulation structure
	Usage
	Basic usage
	Adding test code
	Simple Example

	Logging
	Parallel computing
	Data evaluation tools
	Evaluation scripts
	Plotting scripts

	Tips and tricks

	Code structure
	Directory structure
	Beamline setup

	Support and code extension
	Installation
	PLACET
	GUINEA-PIG
	Framework
	Machine without AFS

	Examples
	Calculation of orbit response matrix

	Simulation parameter and options
	General Simulation Parameters
	Lattice Parameters
	Beam Parameters
	Phase configuration
	Beam-beam
	GUINEA-PIG

	Machine specific parameters
	ATF2
	CLIC
	FACET
	ILC

	Logging Parameters
	Imperfections
	RF jitter variables
	Initial beam jitter
	Constant initial beam energy variation
	Quadrupole strength jitter
	Quadrupole position jitter
	Quadrupole roll jitter
	System Identification parameters
	BPM drifts
	component failures (static)
	add noise to response matrix
	L-FB gain errors
	Wake field monitor offset

	Ground Motion
	Alignment
	Tracking
	Synchrotron radiation

	Orbit feedback
	IP feedback Parameters
	Intertrain feedback
	Intratrain feedback

	BDS Tuning
	Use of Beam based alignment
	Dispersion Free Steering

	Long term steering
	Basic steering
	Online dispersion estimation / Dispersion free steering

	Specific Simulation Parameters

	Description of output files
	Description of parameters available for user scripts
	Element indices
	Accelerator and simulation status

	Python Analysis Documentation
	Brief introduction to scripting languages
	Tcl
	Octave
	Python

